Cem Gokmen

CS PhD Candidate at Stanford, Specializing in Embodied AI and Robotics cem@cemgokmen.com | www.cemgokmen.com | linkedin.com/in/cgokmen Stanford, CA 94305 Updated: October 10, 2024

Research	I develop machine learning algorithms enabling robots to perform complex, long-horizon tasks in
Statement	real-world environments using techniques like learning from demonstrations, reinforcement learning,
	sim-to-real transfer, and leveraging off-the-shelf LLM/VLM models. I also have extensive experience
	building simulation environments and benchmarks to support this research.

Seeking research internships to further drive exciting robotics & embodied AI research.

Education	Stanford University , Stanford, CA Ph.D. in Computer Science, Advisor: Prof. Fei-Fei Li	Sep. 2022 - Present
	Stanford University, Stanford, CA	Sep. 2020 - Jun. 2022
	 M.Sc. in Computer Science Google Computer Science Research Mentorship Program (CSRMP) I Select Coursework: Deep Learning • Principles of Robot Auton Under Uncertainty • Interactive & Embodied Learning • Convolut Visual Recognition • Machina Learning with Graphs 	GPA: 4.03 Fellow omy I • Decision Making ional Neural Networks for
	Georgia Institute of Technology , Atlanta, GA B.Sc. in Computer Science with Undergraduate Research Certification	Aug. 2016 - Dec. 2018 GPA: 3.83
Work Experience	Research Scientist Intern, NVIDIA Research Hosts: Jim Fan, Yuke Zhu. AI Algorithms Group, Santa Clara, CA.	Jun. 2023 - Sep. 2023

Hosts: Jim Fan, Yuke Zhu. AI Algorithms Group, Santa Clara, CA. Jun. 2023 - Sep. 2023
 Developed a method leveraging LLMs to generate demos for learning end-to-end transformer policies for long-horizon robotics tasks.

AI Resident, Google [x] / Everyday Robots

Hosts: Mohi Khansari, Daniel Ho. Mountain View, CA. Jun. 2022 - Sep. 2022
Developed a method to allow robots to estimate their likelihood of success based on previous rollouts of a real-world imitation learning robot policy and decide whether to ask for help.

Software Engineer II, Google

YouTube Premium Team, San Bruno, CA Implemented critical user issues and led software design prined superties on in one masses sing

• Implemented critical user journeys and led software design, gained expertise on in-app messaging methods, developed features across Python/C++ backends and Android/iOS/Web frontends.

Highlighted Publications

- C. Li*, R. Zhang*, J. Wong*, <u>C. Gokmen*</u>, S. Srivastava*, R. Martin-Martin*, C. Wang*, G. Levine*, et al., "BEHAVIOR-1K: A benchmark for embodied AI with 1,000 everyday activities and realistic simulation," in 6th Annual Conference on Robot Learning, 2022, (Co-First Author, CoRL Oral, Best Paper Nominee)
 - We developed **BEHAVIOR-1K**, a human-centered embodied AI benchmark with 1,000 diverse, everyday activities, addressing challenges like long-horizon tasks and complex manipulations in realistic environments. Website: https://behavior.stanford.edu
 - BEHAVIOR is an ongoing, four-year project aiming to provide a robotics research direction grounded in human needs, offering unprecedented diversity and realism compared to traditional benchmarks usually focused on limited tasks and environments.
 - I developed the process and managed the 10+ person team that acquired and created the 6kobject, 50-scene BEHAVIOR-1K dataset, a massive undertaking involving full cross-integration of the assets with the 1,000 task definitions and 4,000 nouns in the BEHAVIOR-1K knowledgebase. Visit https://behavior.stanford.edu/knowledgebase/ for some examples.
 - I co-develop and maintain **OmniGibson** and the older-generation **iGibson**, the high-fidelity simulation environments to simulate the tasks, built on Omniverse Isaac Sim and PyBullet, respectively. Visit https://github.com/StanfordVL/OmniGibson for more info.

- C. Gokmen, D. Ho, and M. Khansari, "Asking for help: Failure prediction in behavioral cloning through value approximation," in 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023
 - We introduced **Behavioral Cloning Value Approximation (BCVA)**, a method to predict failures in robot policies trained using Imitation Learning where no state value estimate is avaiable by default, enabling robots to autonomously ask for help when needed.
 - At Everyday Robots, we used our state value approximation to ask for help with 86% precision across over 2000 real-world trials, particularly in complex tasks like latched-door opening.
- M. Li, S. Zhao, Q. Wang, K. Wang, Y. Zhou, S. Srivastava, <u>C. Gokmen</u>, T. Lee, et al., "Embodied agent interface: Benchmarking LLMs for embodied decision making," in *Neural Information Pro*cessing Systems Datasets and Benchmarks Track, 2024, (NeurIPS Benchmark Track Oral)
 - We introduced the **Embodied Agent Interface**, a framework to systematically benchmark Large Language Models (LLMs) for decision-making tasks in embodied environments, a recently well-explored area of research that we believe is not benchmarked to an adequate standard.
 - This framework allows standardized and fine-grained assessment of LLMs' abilities in handling complex, embodied decision-making scenarios, pinpointing issues like hallucinations and planning errors across 15 LLMs evaluated on benchmarks such as BEHAVIOR and VirtualHome.
- Y. Ge*, Y. Tang*, J. Xu*, <u>C.</u> <u>Gokmen*</u>, C. Li, W. Ai, B. J. Martinez, A. Aydin, *et al.*, "Behavior vision suite: Customizable dataset generation via simulation," in *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, Jun. 2024, (Co-First Author, CVPR Highlight)
 - We developed the **BEHAVIOR Vision Suite (BVS)**, a toolset designed to generate fully customizable synthetic data for evaluating computer vision models, addressing limitations in real-world datasets like poor labeling and diversity.
 - BVS enables controlled experiments by allowing adjustments at multiple levels, including scene, object, and camera parameters, supporting tasks such as model robustness testing, scene understanding, and simulation-to-real transfer for vision tasks like unary and binary state prediction.

Other Publications

- T. Dai, J. Wong, Y. Jiang, C. Wang, <u>C. Gokmen</u>, R. Zhang, J. Wu, and L. Fei-Fei, "ACDC: Automated creation of digital cousins for robust policy learning," in 8th Annual Conference on Robot Learning, 2024
- C. Gokmen, R. Zhang, S. Srivastava, C. Li, M. Lingelbach, R. Martin-Martin, S. Savarese, J. Wu, et al., "Eye-BEHAVIOR: An eye-tracking dataset for everyday household activities in virtual, interactive, and ecological environments," *Journal of Vision*, Dec. 2022
- S. Srivastava, C. Li, M. Lingelbach, R. Martín-Martín, F. Xia, K. E. Vainio, Z. Lian, <u>C. Gokmen</u>, et al., "Behavior: Benchmark for everyday household activities in virtual, interactive, and ecological environments," in *Proceedings of the 5th Conference on Robot Learning*, 2022. [Online]. Available: https://proceedings.mlr.press/v164/srivastava22a.html
- C. Li, F. Xia, R. Martín-Martín, M. Lingelbach, S. Srivastava, B. Shen, K. E. Vainio, <u>C. Gokmen</u>, et al., "Igibson 2.0: Object-centric simulation for robot learning of everyday household tasks," in *Proceedings of the 5th Conference on Robot Learning*, 2022. [Online]. Available: https:// proceedings.mlr.press/v164/li22b.html
- S. Cannon, J. J. Daymude, <u>C. Gokmen</u>, D. Randall, and A. W. Richa, "A Local Stochastic Algorithm for Separation in Heterogeneous Self-Organizing Particle Systems," in *International Conference* on Randomization and Computation (RANDOM), 2019. [Online]. Available: http://drops. dagstuhl.de/opus/volltexte/2019/11269

Teaching	Head Course Assistant, CS 231N: Deep Learning for Computer Vision		
	Stanford University Mar. 2024 - Jun. 2024		
	• Led team of 22 course assistants, planned development of assignments and exams, mentored student projects, and managed logistics for Stanford CS's most popular, 650-student course.		
	• See https://cs231n.stanford.edu/2024/reports.html for mentored projects.		
Skills	Languages: English (Fluent), Turkish (Native), French (Advanced), Spanish (Beginner).		
	Programming: Python, Java, C, C++, JavaScript, HTML, CSS.		
	Research: Reinforcement learning, imitation learning, physics simulation, robotics simulation, mo-		
	tion planning, classical robotics		

Frameworks: PyTorch, TensorFlow, Ray, PyBullet, Omniverse, Isaac Sim, CUDA, Docker